Li–Yau inequalities for the Helfrich functional and applications

We prove a general Li–Yau inequality for the Helfrich functional where the spontaneous curvature enters with a singular volume type integral. In the physically relevant cases, this term can be converted into an explicit energy threshold that guarantees embeddedness. We then apply our result to the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023, Vol.62 (2), p.45-45, Article 45
Hauptverfasser: Rupp, Fabian, Scharrer, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a general Li–Yau inequality for the Helfrich functional where the spontaneous curvature enters with a singular volume type integral. In the physically relevant cases, this term can be converted into an explicit energy threshold that guarantees embeddedness. We then apply our result to the spherical case of the variational Canham–Helfrich model. If the infimum energy is not too large, we show existence of smoothly embedded minimizers. Previously, existence of minimizers was only known in the classes of immersed bubble trees or curvature varifolds.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-022-02381-7