Supercritical CO2 Assisted TiO2 Preparation to Improve the UV Resistance Properties of Cotton Fiber

Cotton fiber is favored by people because of its good moisture absorption, heat preservation, soft feel, comfortable wearing and other excellent performance. In recent years, due to the destruction of the ozone layer, the intensity of ultraviolet radiation at ground level has increased. Cotton fiber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-12, Vol.14 (24), p.5513
Hauptverfasser: Ye, Sihong, Sun, Hui, Wu, Juan, Wan, Lingzhong, Ni, Ying, Wang, Rui, Xiang, Zhouyang, Deng, Xiaonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cotton fiber is favored by people because of its good moisture absorption, heat preservation, soft feel, comfortable wearing and other excellent performance. In recent years, due to the destruction of the ozone layer, the intensity of ultraviolet radiation at ground level has increased. Cotton fiber will degrade under long time ultraviolet irradiation, which limits the outdoor application of cotton fiber. In this study, titanium dioxide (TiO2) particles were prepared on the surface of cotton fibers with the help of supercritical carbon dioxide (SCCO2) to improve the UV resistance of cotton fibers. The effects of SCCO2 treatment on the morphology, surface composition, thermal stability, photostability and mechanical properties of TiO2 were studied by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, thermogravimetric analysis, UV-VIS spectroscopy, and single fiber test. The results showed that TiO2 particles were generated on the fiber surface, which reduced the photo-degradation rate of cotton fiber. This is because TiO2 can absorb UV rays and reduce the absorption of UV rays by the cotton fiber itself. The synthesis process of SCCO2 is simple and environmentally friendly, which provides a promising technology for the synthesis of metal nitrogen dioxide on natural plant fibers.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14245513