Synthesis and Characterization of Alkoxysilane-Bearing Photoreversible Cinnamic Side Groups: A Promising Building-Block for the Design of Multifunctional Silica Nanoparticles

The present study reports on the synthesis of a new alkoxysilane-bearing light-responsive cinnamyl group and its application as a surface functionalization agent for the development of SiO2 nanoparticles (NPs) with photoreversible tails. In detail, cinnamic acid (CINN) was activated with N-hydroxysu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2022-12, Vol.38 (50), p.15662-15671
Hauptverfasser: Orsini, Sara Fernanda, Cipolla, Laura, Petroni, Simona, Dirè, Sandra, Ceccato, Riccardo, Callone, Emanuela, Bongiovanni, Roberta, Dalle Vacche, Sara, Di Credico, Barbara, Mostoni, Silvia, Nisticò, Roberto, Raimondo, Luisa, Scotti, Roberto, D’Arienzo, Massimiliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study reports on the synthesis of a new alkoxysilane-bearing light-responsive cinnamyl group and its application as a surface functionalization agent for the development of SiO2 nanoparticles (NPs) with photoreversible tails. In detail, cinnamic acid (CINN) was activated with N-hydroxysuccinimide (NHS) to obtain the corresponding NHS-ester (CINN–NHS). Subsequently, the amine group of 3-aminopropyltriethoxysilane (APTES) was acylated with CINN–NHS leading to the generation of a novel organosilane, CINN-APTES, which was then exploited for decorating SiO2 NPs. The covalent bond to the silica surface was confirmed by solid state NMR, whereas thermogravimetric analysis unveiled a functionalization degree much higher compared to that achieved by a conventional double-step post-grafting procedure. In light of these intriguing results, the strategy was successfully extended to naturally occurring sepiolite fibers, widely employed as fillers in technological applications. Finally, a preliminary proof of concept of the photoreversibility of the obtained SiO2@CINN-APTES system has been carried out through UV diffuse reflectance. The overall outcomes prove the consistency and the versatility of the methodological protocol adopted, which appears promising for the design of hybrid NPs to be employed as building blocks for photoresponsive materials with the ability to change their molecular structure and subsequent properties when exposed to different light stimuli.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.2c02472