Active image optimization for lattice light sheet microscopy in thick samples
Lattice light-sheet microscopy (LLSM) is a very efficient technique for high resolution 3D imaging of dynamic phenomena in living biological samples. However, LLSM imaging remains limited in depth due to optical aberrations caused by sample-based refractive index mismatch. Here, we propose a simple...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2022-12, Vol.13 (12), p.6211-6228 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lattice light-sheet microscopy (LLSM) is a very efficient technique for high resolution 3D imaging of dynamic phenomena in living biological samples. However, LLSM imaging remains limited in depth due to optical aberrations caused by sample-based refractive index mismatch. Here, we propose a simple and low-cost active image optimization (AIO) method to recover high resolution imaging inside thick biological samples. AIO is based on (1) a light-sheet autofocus step (AF) followed by (2) an adaptive optics image-based optimization. We determine the optimum AIO parameters to provide a fast, precise and robust aberration correction on biological samples. Finally, we demonstrate the performances of our approach on sub-micrometric structures in brain slices and plant roots. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.471757 |