Retrograde Optic Nerve Degeneration in Pituitary Adenoma: A Study with RE-PERG

RE-PERG is altered in presence of primary neuronal degeneration of retinal ganglion cells, both in glaucoma and other diseases. A previous study showed that in a model of retrograde degeneration (vascular dementia) RE-PERG was normal. In this study, we enrolled patients with pituitary adenoma (PA) t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical ophthalmology (Auckland, N.Z.) N.Z.), 2022-01, Vol.16, p.4135-4144
Hauptverfasser: Mavilio, Alberto, Sisto, Dario, Dammacco, Rosanna, Durante, Giuseppe, Alessio, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RE-PERG is altered in presence of primary neuronal degeneration of retinal ganglion cells, both in glaucoma and other diseases. A previous study showed that in a model of retrograde degeneration (vascular dementia) RE-PERG was normal. In this study, we enrolled patients with pituitary adenoma (PA) to evaluate RE-PERG findings in another model of retrograde degeneration compared with healthy controls (HC). Based on the outcome of the present and our previous studies with RE-PERG, and reviewing the literature, we discuss the physiopathology of glaucoma. Twelve PA patients and 14 age-matched HC were recruited. All participants performed visual field (VF) test, retinal nerve fiber layer (RNFL) and ganglion cells complex (GCC) thickness measurement by means of optical coherence tomography (OCT), visual evoked potentials (VEPs) and RE-PERG, a non-invasive, fast steady-state pattern electroretinogram (SS-PERG) sampled in five consecutive blocks of 130 events. VEPs amplitude was significantly lower in PA with respect to HC (6.8±0.6 vs 7.4±0.6 µV; p=0.045). VEPs latency was higher in PA (123.2±5.8 vs 103.6±4.1 msec; p
ISSN:1177-5467
1177-5483
1177-5483
DOI:10.2147/OPTH.S384525