Evaluating Use of Boron- and Hafnium-Modified Polysilazanes for Ceramic Matrix Minicomposites
In this study, the potential of polymer-derived ceramic matrix composites (CMCs) is demonstrated by the addition of thin ceramic coatings on carbon fiber (CF) bundles. Boron- and hafnium-modified polysilazane liquid precursors were synthesized and used to infiltrate the fiber bundles of CF to fabric...
Gespeichert in:
Veröffentlicht in: | ACS omega 2022-12, Vol.7 (49), p.45325-45335 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the potential of polymer-derived ceramic matrix composites (CMCs) is demonstrated by the addition of thin ceramic coatings on carbon fiber (CF) bundles. Boron- and hafnium-modified polysilazane liquid precursors were synthesized and used to infiltrate the fiber bundles of CF to fabricate lab-scale Si(B)CN/CF and Si(Hf)CN/CF CMC minicomposites, respectively by crosslinking and then pyrolysis at 800 °C. The crosslinked precursor to ceramic yield was observed to be as high as 90% when the procedure was carried out in inert environment. The Si(B)CN/CF contained Si–N and B–N bonds, while Si–N and Hf–O–Si bonds were observed for the Si(Hf)CN/CF sample with uniform and dense surfaces. Room-temperature tensile tests showed that the Si(Hf)CN/CF sample could reach a tensile strength of ∼790 MPa and an elastic modulus of 66.88 GPa among the composites. An oxidation study of the Si(Hf)CN/CF minicomposites showed higher stability compared to SiCN/CF and Si(B)CN/CF minicomposites up to 1500 °C. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c05916 |