Human Milk Oligosaccharide 2'-Fucosyllactose Inhibits Ligand Binding to C-Type Lectin DC-SIGN but Not to Langerin
Human milk oligosaccharides (HMOs) and their most abundant component, 2'-Fucosyllactose (2'-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2'-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a w...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-11, Vol.23 (23), p.14745 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human milk oligosaccharides (HMOs) and their most abundant component, 2'-Fucosyllactose (2'-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2'-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a whole mixture of HMOs from pooled human milk (HMOS) and 2'-FL inhibit the binding of the carbohydrate-binding receptor DC-SIGN to its prototypical ligands, fucose and the oligosaccharide Lewis-B, (Le
) in a dose-dependent way. Interestingly, such inhibition by HMOS and 2'-FL was not detected for another C-type lectin, langerin, which is evolutionarily similar to DC-SIGN. The cell-ligand competition assay using DC-SIGN expressing cells confirmed that 2'-FL inhibits the binding of DC-SIGN to Le
. Molecular dynamic (MD) simulations show that 2'-FL exists in a preorganized bioactive conformation before binding to DC-SIGN and this conformation is retained after binding to DC-SIGN. Le
has more flexible conformations and utilizes two binding modes, which operate one at a time via its two fucoses to bind to DC-SIGN. Our hypothesis is that 2'-FL may have a reduced entropic penalty due to its preorganized state, compared to Le
, and it has a lower binding enthalpy, suggesting a better binding to DC-SIGN. Thus, due to the better binding to DC-SIGN, 2'-FL may replace Le
from its binding pocket in DC-SIGN. The MD simulations also showed that 2'-FL does not bind to langerin. Our studies confirm 2'-FL as a specific ligand for DC-SIGN and suggest that 2'-FL can replace other DC-SIGN ligands from its binding pocket during the ligand-receptor interactions in possible immunomodulatory processes. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms232314745 |