Structure of Shock Wave in Nanoscale Porous Nickel at Pressures up to 7 GPa
The structure of shock waves in pressed porous samples of nickel nanoparticles was investigated in a series of uniaxial planar plate impact experiments in the pressure range of 1.6-7.1 GPa. The initial porosity of the samples was about 50%. Wave profiles were obtained using laser velocimetry techniq...
Gespeichert in:
Veröffentlicht in: | Materials 2022-11, Vol.15 (23), p.8501 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure of shock waves in pressed porous samples of nickel nanoparticles was investigated in a series of uniaxial planar plate impact experiments in the pressure range of 1.6-7.1 GPa. The initial porosity of the samples was about 50%. Wave profiles were obtained using laser velocimetry techniques. The nanomaterial demonstrated a complex response to shock loading including the development of a two-wave structure associated with precursor and compaction waves. The effect on profiles and measurements of the observed precursor reverberations propagating between the front of a compaction wave and a monitored sample surface was described. The obtained wave profiles were used to estimate the thicknesses of precursor and compaction wave fronts. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma15238501 |