Acute Magnetic Resonance Imaging Predictors of Chronic Motor Function and Tissue Sparing in Rat Cervical Spinal Cord Injury

Predicting functional outcomes from spinal cord injury (SCI) at the acute setting is important for patient management. This work investigated the relationship of early magnetic resonance imaging (MRI) biomarkers in a rat model of cervical contusion SCI with long-term functional outcome and tissue sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurotrauma 2022-12, Vol.39 (23-24), p.1727-1740
Hauptverfasser: Lee, Seung-Yi, Schmit, Brian D, Kurpad, Shekar N, Budde, Matthew D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting functional outcomes from spinal cord injury (SCI) at the acute setting is important for patient management. This work investigated the relationship of early magnetic resonance imaging (MRI) biomarkers in a rat model of cervical contusion SCI with long-term functional outcome and tissue sparing. Forty rats with contusion injury at C5 at either the spinal cord midline (bilateral) or over the lateral cord (unilateral) were examined using multi-modal quantitative MRI at 1 day post-injury. The extent of T -weighted hyperintensity reflecting edema was greater in the bilateral model compared with the unilateral injury. Diffusion tensor imaging (DTI) exhibited microscopic damage in similar regions of the cord as reductions in fractional anisotropy (FA) and mean diffusivity (MD), but DTI parameter maps were also confounded by the presence of vasogenic edema that locally increased FA and MD. In comparison, filtered diffusion-weighted imaging (fDWI) more clearly delineated the location of acute axonal damage without effects of vasogenic edema. Pairwise correlation analysis revealed that 28-day motor functional outcomes were most strongly associated with the extent of edema (R = -0.69). Principal component analysis identified close associations of motor functional score with tissue sparing, the extent of edema, lesion area, and injury type (unilateral or bilateral). Among the diffusion MRI parameters, lesion areas measured with fDWI had the strongest association with functional outcome (R = -0.41). Voxelwise correlation analysis identified a locus of white matter damage associated with function in the dorsal white matter, although this was likely driven by variance across the two injury patterns (unilateral and bilateral injury). Nonetheless, correlation with motor function within the damaged region found in the voxelwise analysis outperformed morphological lesion area measurement as a predictor of chronic function. Collectively, this study characterized anatomical and diffusion MRI signatures of acute SCI at cervical spine and their association with chronic functional outcomes and histological results.
ISSN:0897-7151
1557-9042
DOI:10.1089/neu.2022.0034