Experimental Verification of Inferred Regulatory Interactions of EARLY FLOWERING 3 (GmELF3-1) in Glycine max
The circadian clock gene network in plants is a transcriptional landscape in which a panoply of regulatory genes controls each other during a 24-hour diurnal period (Harmon et al. 2018; Creux and Harmer, 2019; Roland and Davis 2019). Each of these genes is expressed rhythmically in alternating patte...
Gespeichert in:
Veröffentlicht in: | microPublication biology 2022, Vol.2022 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The circadian clock gene network in plants is a transcriptional landscape in which a panoply of regulatory genes controls each other during a 24-hour diurnal period (Harmon et al. 2018; Creux and Harmer, 2019; Roland and Davis 2019). Each of these genes is expressed rhythmically in alternating patterns of upregulation and repression in the 24-hour period, creating the circadian oscillator. Thus, the circadian clock genes function as molecular timekeepers that influence many key physiological processes of plants. These include the expression of genes related to hormone signaling, shoot development, floral growth, and response to biotic and abiotic stressors in the environment (Sanchez et al. 2011; Greenham and McClung 2015). |
---|---|
ISSN: | 2578-9430 |
DOI: | 10.17912/micropub.biology.000687 |