The Influences of Illumination Regime on Egg-laying Rhythms of Honey Bee Queens

Honey bee queens show extreme fecundity, commonly laying more than a thousand eggs in a single day. It has proven challenging to study the temporal organization of egg-laying behavior because queens are typically active around the clock in the dark cavity of a densely populated nest. To contend with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological rhythms 2022-12, Vol.37 (6), p.609-619
Hauptverfasser: Shpigler, Hagai Y., Yaniv, Almog, Gernat, Tim, Robinson, Gene E., Bloch, Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Honey bee queens show extreme fecundity, commonly laying more than a thousand eggs in a single day. It has proven challenging to study the temporal organization of egg-laying behavior because queens are typically active around the clock in the dark cavity of a densely populated nest. To contend with this challenge, we developed two novel methods allowing detailed monitoring of queen activity and egg laying. We first adapted a high-resolution, continuous, tracking system allowing to track the position of barcode-tagged queens in observation hives with colonies foraging outside. We found that the queen is active ~96% of the day with typically no diurnal rhythm. Next, we developed a new laboratory procedure to monitor egg laying at single egg resolution under different light regimes. We found that under constant darkness (DD) and temperature conditions, queens laid eggs with no circadian rhythms. Queen fecundity was severely reduced under constant light (LL). Under a 12:12 illumination regime, queen fecundity was comparable to under constant darkness, with a higher number of eggs during the light phase. These daily rhythms in egg laying continued when these queens were released to DD conditions, suggesting that egg-laying rhythms are influenced by endogenous circadian clocks. These results suggest that honey bee queens are active and lay eggs around the clock with no diurnal rhythms. Light has complex influences on these behaviors, but more studies are needed to determine whether these effects reflect the influence of light directly on the queen or indirectly by affecting workers that interact with the queen.
ISSN:0748-7304
1552-4531
DOI:10.1177/07487304221126782