Leveraging an established neighbourhood-level, open access wastewater monitoring network to address public health priorities: a population-based study
Before the COVID-19 pandemic, the US opioid epidemic triggered a collaborative municipal and academic effort in Tempe, Arizona, which resulted in the world's first open access dashboard featuring neighbourhood-level trends informed by wastewater-based epidemiology (WBE). This study aimed to sho...
Gespeichert in:
Veröffentlicht in: | The Lancet. Microbe 2023-01, Vol.4 (1), p.e29-e37 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Before the COVID-19 pandemic, the US opioid epidemic triggered a collaborative municipal and academic effort in Tempe, Arizona, which resulted in the world's first open access dashboard featuring neighbourhood-level trends informed by wastewater-based epidemiology (WBE). This study aimed to showcase how wastewater monitoring, once established and accepted by a community, could readily be adapted to respond to newly emerging public health priorities.
In this population-based study in Greater Tempe, Arizona, an existing opioid monitoring WBE network was modified to track SARS-CoV-2 transmission through the analysis of 11 contiguous wastewater catchments. Flow-weighted and time-weighted 24 h composite samples of untreated wastewater were collected at each sampling location within the wastewater collection system for 3 days each week (Tuesday, Thursday, and Saturday) from April 1, 2020, to March 31, 2021 (Area 7 and Tempe St Luke's Hospital were added in July, 2020). Reverse transcription quantitative PCR targeting the E gene of SARS-CoV-2 isolated from the wastewater samples was used to determine the number of genome copies in each catchment. Newly detected clinical cases of COVID-19 by zip code within the City of Tempe, Arizona were reported daily by the Arizona Department of Health Services from May 23, 2020. Maricopa County-level new positive cases, COVID-19-related hospitalisations, deaths, and long-term care facility deaths per day are publicly available and were collected from the Maricopa County Epidemic Curve Dashboard. Viral loads of SARS-CoV-2 (genome copies per day) measured in wastewater from each catchment were aggregated at the zip code level and city level and compared with the clinically reported data using root mean square error to investigate early warning capability of WBE.
Between April 1, 2020, and March 31, 2021, 1556 wastewater samples were analysed. Most locations showed two waves in viral levels peaking in June, 2020, and December, 2020–January, 2021. An additional wave of viral load was seen in catchments close to Arizona State University (Areas 6 and 7) at the beginning of the fall (autumn) semester in late August, 2020. Additionally, an early infection hotspot was detected in the Town of Guadalupe, Arizona, starting the week of May 4, 2020, that was successfully mitigated through targeted interventions. A shift in early warning potential of WBE was seen, from a leading (mean of 8·5 days [SD 2·1], June, 2020) to a lagging (−2·0 days |
---|---|
ISSN: | 2666-5247 2666-5247 |
DOI: | 10.1016/S2666-5247(22)00289-0 |