Somatic Variants in SVIL in Cerebral Aneurysms

While somatic mutations have been well-studied in cancer, their roles in other complex traits are much less understood. Our goal is to identify somatic variants that may contribute to the formation of saccular cerebral aneurysms. We performed whole-exome sequencing on aneurysm tissues and paired per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology. Genetics 2022-12, Vol.8 (6), p.e200040-e200040
Hauptverfasser: Lai, Pui Man Rosalind, Ryu, Jee-Yeon, Park, Sang-Cheol, Gross, Bradley A., Dickinson, Lawrence D., Dagen, Sarajune, Aziz-Sultan, Mohammad Ali, Boulos, Alan S., Barrow, Daniel L., Batjer, H. Hunt, Blackburn, Spiros, Chang, Edward F., Chen, P. Roc, Colby, Geoffrey P., Cosgrove, Garth Rees, David, Carlos A., Day, Arthur L., Frerichs, Kai U., Niemela, Mika, Ojemann, Steven G., Patel, Nirav J., Shi, Xiangen, Valle-Giler, Edison P., Wang, Anthony C., Welch, Babu G., Zusman, Edie E., Weiss, Scott T., Du, Rose
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While somatic mutations have been well-studied in cancer, their roles in other complex traits are much less understood. Our goal is to identify somatic variants that may contribute to the formation of saccular cerebral aneurysms. We performed whole-exome sequencing on aneurysm tissues and paired peripheral blood. RNA sequencing and the CRISPR/Cas9 system were then used to perform functional validation of our results. Somatic variants involved in supervillin ( ) or its regulation were found in 17% of aneurysm tissues. In the presence of a mutation in the gene, the expression level of SVIL was downregulated in the aneurysm tissue compared with normal control vessels. Downstream signaling pathways that were induced by knockdown of via the CRISPR/Cas9 system in vascular smooth muscle cells (vSMCs) were determined by evaluating changes in gene expression and protein kinase phosphorylation. We found that regulated the phenotypic modulation of vSMCs to the synthetic phenotype via Krüppel-like factor 4 and platelet-derived growth factor and affected cell migration of vSMCs via the RhoA/ROCK pathway. We propose that somatic variants form a novel mechanism for the development of cerebral aneurysms. Specifically, somatic variants in result in the phenotypic modulation of vSMCs, which increases the susceptibility to aneurysm formation. This finding suggests a new avenue for the therapeutic intervention and prevention of cerebral aneurysms.
ISSN:2376-7839
2376-7839
DOI:10.1212/NXG.0000000000200040