Steric Hindrance of NH3 Diffusion on Pt(111) by Co-Adsorbed O‑Atoms

A detailed velocity-resolved kinetics study of NH3 thermal desorption rates from p(2 × 2) O/Pt(111) is presented. We find a large reduction in the NH3 desorption rate due to adsorption of O-atoms on Pt(111). A physical model describing the interactions between adsorbed NH3 and O-atoms explains these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-11, Vol.144 (47), p.21791-21799
Hauptverfasser: Borodin, Dmitriy, Galparsoro, Oihana, Rahinov, Igor, Fingerhut, Jan, Schwarzer, Michael, Hörandl, Stefan, Auerbach, Daniel J., Kandratsenka, Alexander, Schwarzer, Dirk, Kitsopoulos, Theofanis N., Wodtke, Alec M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A detailed velocity-resolved kinetics study of NH3 thermal desorption rates from p(2 × 2) O/Pt(111) is presented. We find a large reduction in the NH3 desorption rate due to adsorption of O-atoms on Pt(111). A physical model describing the interactions between adsorbed NH3 and O-atoms explains these observations. By fitting the model to the derived desorption rate constants, we find an NH3 stabilization on p(2 × 2) O/Pt(111) of 0.147–0.014 +0.023 eV compared to Pt(111) and a rotational barrier of 0.084–0.022 +0.049 eV, which is not present on Pt(111). The model also quantitatively predicts the steric hindrance of NH3 diffusion on Pt(111) due to co-adsorbed O-atoms. The derived diffusion barrier of NH3 on p(2 × 2) O/Pt(111) is 1.10–0.13 +0.22 eV, which is 0.39–0.14 +0.22 eV higher than that on pristine Pt(111). We find that Perdew Burke Ernzerhof (PBE) and revised Perdew Burke Ernzerhof (RPBE) exchange–correlation functionals are unable to reproduce the experimentally observed NH3–O adsorbate–adsorbate interactions and NH3 binding energies at Pt(111) and p(2 × 2) O/Pt(111), which indicates the importance of dispersion interactions for both systems.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.2c10458