Estimation of site frequency spectra from low-coverage sequencing data using stochastic EM reduces overfitting, runtime, and memory usage
Abstract The site frequency spectrum is an important summary statistic in population genetics used for inference on demographic history and selection. However, estimation of the site frequency spectrum from called genotypes introduces bias when working with low-coverage sequencing data. Methods exis...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2022-11, Vol.222 (4) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The site frequency spectrum is an important summary statistic in population genetics used for inference on demographic history and selection. However, estimation of the site frequency spectrum from called genotypes introduces bias when working with low-coverage sequencing data. Methods exist for addressing this issue but sometimes suffer from 2 problems. First, they can have very high computational demands, to the point that it may not be possible to run estimation for genome-scale data. Second, existing methods are prone to overfitting, especially for multidimensional site frequency spectrum estimation. In this article, we present a stochastic expectation–maximization algorithm for inferring the site frequency spectrum from NGS data that address these challenges. We show that this algorithm greatly reduces runtime and enables estimation with constant, trivial RAM usage. Furthermore, the algorithm reduces overfitting and thereby improves downstream inference. An implementation is available at github.com/malthesr/winsfs. |
---|---|
ISSN: | 1943-2631 0016-6731 1943-2631 |
DOI: | 10.1093/genetics/iyac148 |