AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation

Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning theory, it is reasonable to experiment with peptide drug design using methods. We coll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics advances 2022, Vol.2 (1), p.vbac080-vbac080
Hauptverfasser: Lin, Tzu-Tang, Sun, Yih-Yun, Wang, Ching-Tien, Cheng, Wen-Chih, Lu, I-Hsuan, Lin, Chung-Yen, Chen, Shu-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antiviral peptides (AVPs) from various sources suggest the possibility of developing peptide drugs for treating viral diseases. Because of the increasing number of identified AVPs and the advances in deep learning theory, it is reasonable to experiment with peptide drug design using methods. We collected the most up-to-date AVPs and used deep learning to construct a sequence-based binary classifier. A generative adversarial network was employed to augment the number of AVPs in the positive training dataset and enable our deep learning convolutional neural network (CNN) model to learn from the negative dataset. Our classifier outperformed other state-of-the-art classifiers when using the testing dataset. We have placed the trained classifiers on a user-friendly web server, AI4AVP, for the research community. AI4AVP is freely accessible at http://axp.iis.sinica.edu.tw/AI4AVP/; codes and datasets for the peptide GAN and the AVP predictor CNN are available at https://github.com/lsbnb/amp_gan and https://github.com/LinTzuTang/AI4AVP_predictor. Supplementary data are available at online.
ISSN:2635-0041
2635-0041
DOI:10.1093/bioadv/vbac080