Antibody-Based Methods Reveal the Protein Expression Properties of Glucosinolate Sulfatase 1 and 2 in Plutella xylostella
The glucosinolates (GLs) and myrosinase defensive systems in cruciferous plants were circumvented by Plutella xylostella using glucosinolate sulfatases (PxGSSs) during pest-plant interaction. Despite identifying three duplicated GSS-encoding genes in P xylostella, limited information regarding their...
Gespeichert in:
Veröffentlicht in: | Journal of insect science (Tucson, Ariz.) Ariz.), 2022-11, Vol.22 (6) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The glucosinolates (GLs) and myrosinase defensive systems in cruciferous plants were circumvented by Plutella xylostella using glucosinolate sulfatases (PxGSSs) during pest-plant interaction. Despite identifying three duplicated GSS-encoding genes in P xylostella, limited information regarding their spatiotemporal and induced expression is available. Here, we investigated the tissue-and stage- specific expression and induction in response to GLs of PxGSS1 and PxGSS2 (PxGSS1/2) at the protein level, which shares a high degree of similarity in protein sequences. Western blotting (WB) analysis showed that PxGSS1/2 exhibited a higher protein level in mature larvae, their guts, and gut content. A significantly high protein and transcript levels of PxGSS1/2 were also detected in the salivary glands using WB and qRT- PCR. The immunofluorescence (IF) and immunohistochemistry (IHC) results confirmed that PxGSS1/2 is widely expressed in the larval body. The IHC was more appropriate than IF when autofluorescence interference was present in collected samples. Furthermore, the content of PxGSS1/2 did not change significantly under treatments of GL mixture from Arabidopsis thaliana ecotype Col-0, or commercial ally (sinigrin), 4- (methylsulfinyl)butyl, 3-(methylsulfinyl) propyl, and indol-3-ylmethyl GLs indicating that the major GLs from leaves of A. thaliana Col-0 failed to induce the expression of proteins for both PxGSS1 and PxGSS2. Our study systemically characterized the expression properties of PxGSS1/2 at the protein level, which improves our understanding of PxGSS1/2-center adaptation in P. xylostella during long-term insect-plant interaction. |
---|---|
ISSN: | 1536-2442 1536-2442 |
DOI: | 10.1093/jisesa/ieac070 |