Reference Genome of the Northwestern Pond Turtle, Actinemys marmorata
The northwestern pond turtle, Actinemys marmorata, and its recently recognized sister species, the southwestern pond turtle, A. pallida, are the sole aquatic testudines occurring over most of western North America and the only living representatives of the genus Actinemys. Although it historically r...
Gespeichert in:
Veröffentlicht in: | The Journal of heredity 2022-11, Vol.113 (6), p.624-631 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The northwestern pond turtle, Actinemys marmorata, and its recently recognized sister species, the southwestern pond turtle, A. pallida, are the sole aquatic testudines occurring over most of western North America and the only living representatives of the genus Actinemys. Although it historically ranged from Washington state through central California, USA, populations of the northwestern pond turtle have been in decline for decades and the species is afforded state-level protection across its range; it is currently being considered for protection under the US Endangered Species Act. Here, we report a new, chromosome-level assembly of A. marmorata as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 198 scaffolds spanning 2,319,339,408 base pairs, has a contig N50 of 75 Mb, a scaffold N50 of 146Mb, and BUSCO complete score of 96.7%, making it the most complete testudine assembly of the 24 species from 13 families that are currently available. In combination with the A. pallida reference genome that is currently under construction through the CCGP, the A. marmorata genome will be a powerful tool for documenting landscape genomic diversity, the basis of adaptations to salt tolerance and thermal capacity, and hybridization dynamics between these recently diverged species. |
---|---|
ISSN: | 0022-1503 1465-7333 1465-7333 |
DOI: | 10.1093/jhered/esac021 |