Peptide-Grafted Nontoxic Cyclodextrins and Nanoparticles against Bacteriophage Infections
One of the biggest threats for bacteria-based bioreactors in the biotechnology industry is infections caused by bacterial viruses called bacteriophages. More than 70% of companies admitted to encountering this problem. Despite phage infections being such a dangerous and widespread risk, to date, the...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-11, Vol.16 (11), p.18990-19001 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the biggest threats for bacteria-based bioreactors in the biotechnology industry is infections caused by bacterial viruses called bacteriophages. More than 70% of companies admitted to encountering this problem. Despite phage infections being such a dangerous and widespread risk, to date, there are no effective methods to avoid them. Here we present a peptide-grafted compounds that irreversibly deactivate bacteriophages and remain safe for bacteria and mammalian cells. The active compounds consist of a core (cyclodextrin or gold nanoparticle) coated with a hydrophobic chain terminated with a peptide selective for bacteriophages. Such peptides were selected via a phage display technique. This approach enables irreversible deactivation of the wide range of T-like phages (including the most dangerous in phage infections, phage T1) at 37 °C in 1 h. We show that our compounds can be used directly inside the environment of the bioreactor, but they are also a safe additive to stocks of antibiotics and expression inducers (such as isopropyl β-d-1-thiogalactopyranoside, i.e., IPTG) that cannot be autoclaved and are a common source of phage infections. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.2c07896 |