Vanillic Acid Inhibited the Induced Glycation Using In Vitro and In Vivo Models

Background. Glycation is implicated in the pathophysiology of many diseases, including diabetes, cancer, neurodegenerative diseases, and aging. Several natural and synthetic compounds were investigated for their antiglycation activity. We evaluated the antiglycation effect of vanillic acid (VA) usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2022-11, Vol.2022, p.1-11
Hauptverfasser: Alhadid, Amani, Bustanji, Yasser, Harb, Amani, Al-Hiari, Yusuf, Abdalla, Shtaywy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Glycation is implicated in the pathophysiology of many diseases, including diabetes, cancer, neurodegenerative diseases, and aging. Several natural and synthetic compounds were investigated for their antiglycation activity. We evaluated the antiglycation effect of vanillic acid (VA) using in vitro and in vivo experimental models. Methods. In vitro, bovine serum albumin (BSA) (50 mg/ml) was incubated with glucose (50 mM) with or without VA at 1.0–100 mM for 1 week at 37°C, and then, excitation/emission fluorescence was measured at 370/440 nm to determine glycation inhibition. The cytoprotective effect of VA was evaluated using RAW 264.7 cells incubated with or without VA at 7.8–500 μM along with 100–400 μM of methylglyoxal for 48 hours, and cell viability was determined using the MTT assay. Aminoguanidine (AMG) was used as a positive control in both in vitro and cell culture experiments. In vivo, 52 streptozotocin-induced diabetic rats were randomly assigned to 4 groups and treated with 0, 1.5, 4.5, or 15 mg/kg VA for four weeks. Serum fructosamine and blood glycosylated hemoglobin (HbA1c) were then measured, and advanced glycation end-products (AGEs) were detected in the kidneys and the skin of deboned tails using an immunohistochemistry assay. Results. VA caused a concentration-dependent effect against BSA glycation (IC50 of 45.53 mM vs. 5.09 mM for AMG). VA enhanced cell viability at all concentrations of VA and methylglyoxal. VA did not affect serum fructosamine or blood HbA1c levels, although it markedly decreased AGEs in the kidney in a dose-dependent manner and decreased AGEs in the skin of deboned tail tissues. Conclusion. VA had significant antiglycation activity at cellular and long-term glycation.
ISSN:1741-427X
1741-4288
DOI:10.1155/2022/7119256