Unsupervised Analysis Based on DCE-MRI Radiomics Features Revealed Three Novel Breast Cancer Subtypes with Distinct Clinical Outcomes and Biological Characteristics

Background: This study aimed to reveal the heterogeneity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of breast cancer (BC) and identify its prognosis values and molecular characteristics. Methods: Two radiogenomics cohorts (n = 246) were collected and tumor regions were segment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2022-11, Vol.14 (22), p.5507
Hauptverfasser: Ming, Wenlong, Li, Fuyu, Zhu, Yanhui, Bai, Yunfei, Gu, Wanjun, Liu, Yun, Liu, Xiaoan, Sun, Xiao, Liu, Hongde
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: This study aimed to reveal the heterogeneity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of breast cancer (BC) and identify its prognosis values and molecular characteristics. Methods: Two radiogenomics cohorts (n = 246) were collected and tumor regions were segmented semi-automatically. A total of 174 radiomics features were extracted, and the imaging subtypes were identified and validated by unsupervised analysis. A gene-profile-based classifier was developed to predict the imaging subtypes. The prognostic differences and the biological and microenvironment characteristics of subtypes were uncovered by bioinformatics analysis. Results: Three imaging subtypes were identified and showed high reproducibility. The subtypes differed remarkably in tumor sizes and enhancement patterns, exhibiting significantly different disease-free survival (DFS) or overall survival (OS) in the discovery cohort (p = 0.024) and prognosis datasets (p ranged from
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers14225507