Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells
The degeneration of nigral (A9) dopaminergic (DA) neurons causes motor symptoms in Parkinson’s disease (PD). We use small-molecule compounds to direct the differentiation of human induced pluripotent stem cells (iPSCs) to A9 DA neurons that share many important properties with their in vivo counterp...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2022-11, Vol.27 (11), p.4407-4418 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The degeneration of nigral (A9) dopaminergic (DA) neurons causes motor symptoms in Parkinson’s disease (PD). We use small-molecule compounds to direct the differentiation of human induced pluripotent stem cells (iPSCs) to A9 DA neurons that share many important properties with their in vivo counterparts. The method generates a large percentage of TH
+
neurons that express appropriate A9 markers, such as GIRK2 and ALDH1A1, but mostly not the A10 marker CALBINDIN. Functionally, they exhibit autonomous pacemaking based on L-type voltage-dependent Ca
2+
channels and show autoreceptor-dependent regulation of dopamine release. When transplanted in the striatum of 6-OHDA-lesioned athymic rats, the human A9 DA neurons manifest robust survival and axon outgrowth, and ameliorate motor deficits in the rat PD model. The ability to generate patient-specific A9 DA autonomous pacemakers will significantly improve PD research and facilitate the development of disease-modifying therapies. |
---|---|
ISSN: | 1359-4184 1476-5578 1476-5578 |
DOI: | 10.1038/s41380-022-01628-1 |