Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture

To explore the in vivo and in vitro plant growth promoting activities, biocatalytic potential, and antimicrobial activity of salt tolerance rhizoactinobacteria, rhizospheric soil of a halotolerant plant Saueda maritima L. was collected from Rann of Tiker, near Little Rann of Kutch, Gujarat (India)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian journal of microbiology 2022-12, Vol.53 (4), p.1817-1828
Hauptverfasser: Chauhan, Jagruti, Gohel, Sangeeta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To explore the in vivo and in vitro plant growth promoting activities, biocatalytic potential, and antimicrobial activity of salt tolerance rhizoactinobacteria, rhizospheric soil of a halotolerant plant Saueda maritima L. was collected from Rann of Tiker, near Little Rann of Kutch, Gujarat (India). The morphology analysis of the isolated strain TSm39 revealed that the strain belonged to the phylum actinobacteria, as it was stained Gram-positive, displayed filamentous growth, showed spore formation and red pigment production on starch casein agar (SCA). It was identified as Georgenia soli based on 16S rRNA gene sequencing. The Georgenia soli strain TSm39 secreted extracellular amylase, pectinase, and protease. It showed in vitro plant growth-promoting (PGP) activities such as indole acetic acid (IAA) production, siderophore production, ammonia production, and phosphate solubilization. In vivo plant growth-promoting traits of strain TSm39 revealed 30% seed germination on water agar and vigor index 374.4. Additionally, a significant increase ( p  ≤ 0.05) was found in growth parameters such as root length (16.1 ± 0.22), shoot length (15.2 ± 0.17), the fresh weight (g), and dry weight (g) of the roots (0.43 ± 0.42 and 0.32 ± 0.12), shoots (0.62 ± 0.41 and 0.13 ± 0.03), and leaves (0.42 ± 0.161 and 0.14 ± 0.42) in treated seeds of Vigna radiata L. plant with the strain TSm39 compared to control. The antibiotic susceptibility profile revealed resistance of the strain TSm39 to erythromycin, ampicillin, tetracycline, and oxacillin, while it displayed maximum sensitivity to vancomycin (40 ± 0.72), chloramphenicol (40 ± 0.61), clarithromycin (40 ± 1.30), azithromycin (39 ± 0.42), and least sensitivity to teicoplanin (15 ± 0.15). Moreover, the antimicrobial activity of the strain TSm39 was observed against Gram’s positive and Gram’s negative microorganisms such as Shigella , Proteus vulgaris , and Bacillus subtilis . These findings indicated that the Georgenia soli strain TSm39 has multiple plant-growth-promoting properties and biocatalytic potential that signifies its agricultural applications in the enhancement of crop yield and quality and would protect the plant against plant pathogens.
ISSN:1517-8382
1678-4405
DOI:10.1007/s42770-022-00794-2