Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability

The production of therapeutic and industrial recombinant proteins in plants has advantages over established bacterial and mammalian systems in terms of cost, scalability, growth conditions, and product safety. In order to compete with these conventional expression systems, however, plant expression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-11, Vol.23 (21), p.13516
Hauptverfasser: Feng, Ziru, Li, Xifeng, Fan, Baofang, Zhu, Cheng, Chen, Zhixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The production of therapeutic and industrial recombinant proteins in plants has advantages over established bacterial and mammalian systems in terms of cost, scalability, growth conditions, and product safety. In order to compete with these conventional expression systems, however, plant expression platforms must have additional economic advantages by demonstrating a high protein production yield with consistent quality. Over the past decades, important progress has been made in developing strategies to increase the yield of recombinant proteins in plants by enhancing their expression and reducing their degradation. Unlike bacterial and animal systems, plant expression systems can utilize not only cell cultures but also whole plants for the production of recombinant proteins. The development of viral vectors and chloroplast transformation has opened new strategies to drastically increase the yield of recombinant proteins from plants. The identification of promoters for strong, constitutive, and inducible promoters or the tissue-specific expression of transgenes allows for the production of recombinant proteins at high levels and for special purposes. Advances in the understanding of RNAi have led to effective strategies for reducing gene silencing and increasing recombinant protein production. An increased understanding of protein translation, quality control, trafficking, and degradation has also helped with the development of approaches to enhance the synthesis and stability of recombinant proteins in plants. In this review, we discuss the progress in understanding the processes that control the synthesis and degradation of gene transcripts and proteins, which underlie a variety of developed strategies aimed at maximizing recombinant protein production in plants.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms232113516