The Effects of Eccentric Web Openings on the Compressive Performance of Pultruded GFRP Boxes Wrapped with GFRP and CFRP Sheets

Pultruded fiber-reinforced polymer (PFRP) profiles have started to find widespread use in the structure industry. The position of the web openings on these elements, which are especially exposed to axial pressure force, causes a change in the behavior. In this study, a total of 21 pultruded box prof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-10, Vol.14 (21), p.4567
Hauptverfasser: Madenci, Emrah, Özkılıç, Yasin Onuralp, Aksoylu, Ceyhun, Safonov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pultruded fiber-reinforced polymer (PFRP) profiles have started to find widespread use in the structure industry. The position of the web openings on these elements, which are especially exposed to axial pressure force, causes a change in the behavior. In this study, a total of 21 pultruded box profiles were tested under vertical loads and some of them were strengthened with carbon-FRP (CFRP) and glass-FRP (GFRP). The location, number and reinforcement type of the web openings on the profiles were taken into account as parameters. As a result of the axial test, it was understood that when a hole with a certain diameter is to be drilled on the profile, its position and number are very important. The height-centered openings in the middle of the web had the least effect on the reduction in the load-carrying capacity and the stability of the profile. In addition, it has been determined that the web openings away from the center and especially the eccentric opening significantly reduces the load carrying capacity. Furthermore, when double holes were drilled close to each other, a significant decrease in the capacity was observed and strengthening had the least effect on these specimens. It was also determined that the specimens reinforced with carbon FRP contribute more to the load-carrying capacity than GFRP.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14214567