EGFR T751_I759delinsN Mutation in Exon19 Detected by NGS but Not by Real-Time PCR in a Heavily-Treated Patient with NSCLC
The detection of driver gene mutations can determine appropriate treatment strategies for non-small cell lung cancer (NSCLC) by identifying the presence of an effective druggable target. Mutations in the gene encoding the epidermal growth factor receptor (EGFR) are common driver mutations in NSCLC t...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-11, Vol.23 (21), p.13451 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The detection of driver gene mutations can determine appropriate treatment strategies for non-small cell lung cancer (NSCLC) by identifying the presence of an effective druggable target. Mutations in the gene encoding the epidermal growth factor receptor (EGFR) are common driver mutations in NSCLC that can be effectively targeted by the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, without the detection of driver mutations, appropriate therapeutic decisions cannot be made. The most commonly applied methods for detecting driver gene mutations are assays based on polymerase chain reaction (PCR). However, the underlying mechanism of PCR-based assays limits the detection of rare mutations. Therefore, patients harboring rare mutations may not receive optimal treatment. We report a heavily-treated patient with NSCLC who harbored a T751_I759delinsN mutation in exon 19 of EGFR that was not detected by real-time PCR but was successfully detected by next-generation sequencing (NGS). The detection of a driver mutation using NGS resulted in the administration of targeted therapy, leading to favorable progression-free survival for the patient. Our report highlights the importance and potential of routine NGS testing among NSCLC patients for whom traditional assays fail to detect driver mutations when determining treatment options. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms232113451 |