Characterization of structural and functional network organization after focal prefrontal lesions in humans in proof of principle study
Lesion research classically maps behavioral effects of focal damage to the directly injured brain region. However, such damage can also have distant effects that can be assessed with modern imaging methods. Furthermore, the combination and comparison of imaging methods in a lesion model may shed lig...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2022-12, Vol.227 (9), p.3027-3041 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lesion research classically maps behavioral effects of focal damage to the directly injured brain region. However, such damage can also have distant effects that can be assessed with modern imaging methods. Furthermore, the combination and comparison of imaging methods in a lesion model may shed light on the biological basis of structural and functional networks in the healthy brain. We characterized network organization assessed with multiple MRI imaging modalities in 13 patients with chronic focal damage affecting either superior or inferior frontal gyrus (SFG, IFG) and 18 demographically matched healthy Controls. We first defined structural and functional network parameters in Controls and then investigated grey matter (GM) and white matter (WM) differences between patients and Controls. Finally, we examined the differences in functional coupling to large-scale resting state networks (RSNs). The results suggest lesions are associated with widespread within-network GM loss at distal sites, yet leave WM and RSNs relatively preserved. Lesions to either prefrontal region also had a similar relative level of impact on structural and functional networks. The findings provide initial evidence for causal contributions of specific prefrontal regions to brain networks in humans that will ultimately help to refine models of the human brain. |
---|---|
ISSN: | 1863-2653 1863-2661 0340-2061 |
DOI: | 10.1007/s00429-022-02570-2 |