Zwitterionic Cross-Linked Biodegradable Nanocapsules for Cancer Imaging

Zwitterionic cross-linked biodegradable nanocapsules (NCs) were synthesized for cancer imaging. A polylactide (PLA)-based diblock copolymer with two blocks carrying acetylenyl and allyl groups respectively was synthesized by ring-opening polymerization (ROP). Azide–alkyne “click” reaction was conduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-02, Vol.35 (5), p.1440-1449
Hauptverfasser: Sun, Haotian, Yan, Lingyue, Carter, Kevin A, Zhang, Jiaqi, Caserto, Julia S, Lovell, Jonathan F, Wu, Yun, Cheng, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zwitterionic cross-linked biodegradable nanocapsules (NCs) were synthesized for cancer imaging. A polylactide (PLA)-based diblock copolymer with two blocks carrying acetylenyl and allyl groups respectively was synthesized by ring-opening polymerization (ROP). Azide–alkyne “click” reaction was conducted to conjugate sulfobetaine (SB) zwitterions and fluorescent dye Cy5.5 onto the acetylenyl-functionalized first block of the diblock copolymer. The resulting copolymer with a hydrophilic SB/Cy5.5-functionalized PLA block and a hydrophobic allyl-functionalized PLA block could stabilize miniemulsions because of its amphiphilic diblock structure. UV-induced thiol–ene “click” reaction between a dithiol cross-linker and the hydrophobic allyl-functionalized block of the copolymer at the peripheral region of nanoscopic oil nanodroplets in the miniemulsion generated cross-linked polymer NCs with zwitterionic outer shells. These NCs showed an average hydrodynamic diameter (D h) of 136 nm. They exhibited biodegradability, biocompatibility and high colloidal stability. In vitro study indicated that these NCs could be taken up by MIA PaCa-2 cancer cells. In vivo imaging study showed that, comparing to a small molecule dye, NCs had a longer circulation time, facilitating their accumulation at tumors for cancer imaging. Overall, this work demonstrates the applicability of zwitterionic biodegradable polymer-based materials in cancer diagnosis.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.8b01633