On the Role of Noncovalent Ligand-Substrate Interactions in Au(I) Catalysis: An Experimental and Computational Study of Protodeauration

A systematic study of protodeauration, a crucial step often found in gold catalysis, was performed using isolated vinyl gold­(I) complexes. By varying substituents on gold complexes, we explore how their properties influence protodeauration. Phenols were employed as the proton source, and their subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2022-11, Vol.12 (21), p.13158-13163
Hauptverfasser: Jo, Taegeun, Taschinski, Svenja, Leach, Isaac F., Bauer, Christina, Hashmi, A. Stephen K., Klein, Johannes E. M. N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A systematic study of protodeauration, a crucial step often found in gold catalysis, was performed using isolated vinyl gold­(I) complexes. By varying substituents on gold complexes, we explore how their properties influence protodeauration. Phenols were employed as the proton source, and their substituents were also varied, providing insight through variation of their acidity. A linear Hammett correlation is identified for the series of substituted vinyl gold­(I) complexes, while a nonlinear trend is found for the series of substituted phenols. Computationally, we reproduce our experimental observations and identify significant noncovalent interactions (NCIs) between the proton donor and vinyl gold­(I) complexes. This finding is of particular importance for gold-catalyzed reactions as they often employ linear two-coordinate complexes where the site of the reaction is spatially remote from the ligand bound to gold. The NCIs between substrates and intermediates lead to a significant acceleration of the protodeauration step in this work, opening the door to alternative strategies in the field of gold catalysis.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.2c03384