Künstliche Intelligenz bei der Diagnose Seltener Erkrankungen: die Entwicklung der Phänotyp-Analyse

Zusammenfassung Durch die Analyse des Erscheinungsbildes (Phänotyp) von Patient:innen kann die Diagnostik von Seltenen Erkrankungen unterstützt werden, da bei vielen genetischen Erkrankungen charakteristische Abweichungen (Dysmorphologien) auftreten. Diese betreffen z. B. die Merkmale des Gesichts –...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz Gesundheitsforschung, Gesundheitsschutz, 2022, Vol.65 (11), p.1159-1163
1. Verfasser: Krawitz, Peter M.
Format: Artikel
Sprache:eng ; ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zusammenfassung Durch die Analyse des Erscheinungsbildes (Phänotyp) von Patient:innen kann die Diagnostik von Seltenen Erkrankungen unterstützt werden, da bei vielen genetischen Erkrankungen charakteristische Abweichungen (Dysmorphologien) auftreten. Diese betreffen z. B. die Merkmale des Gesichts – die „faziale Gestalt“. In diesem Beitrag wird ein Bereich der künstlichen Intelligenz (KI) beleuchtet, in dem es in den letzten Jahren große Fortschritte gegeben hat: die Erkennung charakteristischer Muster in medizinischen Bilddaten mittels vielschichtiger, gefalteter künstlicher neuronaler Netzwerke (Next-Generation Phenotyping – NGP). Die technischen Grundlagen der Methode werden kurz beschrieben und es wird auf die hohe Relevanz von frei zugänglichen Daten für die Wissenschaftsgemeinschaft zur Entwicklung von KI eingegangen. Des Weiteren wird erläutert, warum Entscheidungen von KI immer nachvollziehbar bleiben sollten und wie es gelingen kann, die Herausforderungen in Hinblick auf Datenschutz und Transparenz zu meistern. Zukünftig können Software-Anwendungen mit KI ärztliche Fachkräfte bei der Diagnostik von Seltenen Erkrankungen unterstützen. Das Vertrauen in den Einsatz von KI wird steigen, wenn Patient:innen ihre Datenhoheit behalten und nachvollziehen können, auf welchem Weg die Diagnose entstanden ist.
ISSN:1436-9990
1437-1588
DOI:10.1007/s00103-022-03602-2