Application of O-RADS Ultrasound Lexicon-Based Logistic Regression Analysis Model in the Diagnosis of Solid Component-Containing Ovarian Malignancies
Objective. To use the logistic regression model to evaluate the value of ultrasound characteristics in the Ovarian-Adnexal Reporting and Data System ultrasound lexicon in determining ovarian solid component-containing mass benignancy/malignancy. Methods. We retrospectively analyzed the data of 172 p...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2022-10, Vol.2022, p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective. To use the logistic regression model to evaluate the value of ultrasound characteristics in the Ovarian-Adnexal Reporting and Data System ultrasound lexicon in determining ovarian solid component-containing mass benignancy/malignancy. Methods. We retrospectively analyzed the data of 172 patients with adnexal masses discovered by ultrasound, and diagnosis was confirmed by postoperative pathological tests from January 2019 to December 2021. Thirteen ovarian tumor-related parameters in the benign and malignant ovarian tumor groups were selected for univariate analyses. Statistically significant parameters were included in multivariate logistic regression analyses to construct a logistic regression diagnosis model, and the diagnostic performance of the model in predicting ovarian malignancies was calculated. Results. Of the 172 adnexal tumors, 104 were benign, and 68 were malignant. There were differences in cancer antigen 125, maximum mass diameter, maximum solid component diameter, multilocular cyst with solid component, external contour, whether acoustic shadows were present in the solid component, number of papillae, vascularity, presence/absence of ascites, and presence/absence of peritoneal thickening or nodules between the benign ovarian tumor and malignancy groups (p |
---|---|
ISSN: | 2314-6133 2314-6141 |
DOI: | 10.1155/2022/7187334 |