Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications

Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-10, Vol.14 (20), p.4396
Hauptverfasser: Mohammed, Abdulrahman A. B. A., Hasan, Zaimah, Omran, Abdoulhdi A. Borhana, Kumar, V.Vinod, Elfaghi, Abdulhafid M., Ilyas, R. A., Sapuan, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and gas equipment. Therefore, continuous studies have been employed to improve their mechanical, thermal, physical properties. In this research, we conduct a comprehensive review about corn fiber and corn starch-based biocomposite. The results gained from previous studies were compared and discussed. Firstly, the chemical, thermal, and mechanical properties of cornstarch-based composite were discussed. Then, the effects of various types of plasticizers on the flexibility of the cornstarch-based composite were addressed. The effects of chemical treatments on the properties of biocomposite using different cross-linking agents were discussed. The corn fiber surface treatment to enhance interfacial adhesion between natural fiber and polymeric matrix also were addressed. Finally, morphological characterization, crystallinity degree, and measurement of vapor permeability, degradation, and uptake of water were discussed. The mechanical, thermal, and water resistance properties of corn starch and fibers-based biopolymers show a significant improvement through plasticizing, chemical treatment, grafting, and cross-linker agent procedures, which expands their potential applications.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14204396