Numerical and Experimental Investigations of the Influence of Operation on the Technical Condition of Pressure Vessels

The paper presents the issues related to the design and assessment of the technical condition as well as determination of the residual durability of pressure equipment. Based on a real a example, a liquid nitrogen spherical tank, we present the development and applicability of the method for assessm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-10, Vol.15 (20), p.7281
Hauptverfasser: Moczko, Przemyslaw, Paduchowicz, Michał, Pietrusiak, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents the issues related to the design and assessment of the technical condition as well as determination of the residual durability of pressure equipment. Based on a real a example, a liquid nitrogen spherical tank, we present the development and applicability of the method for assessment of the durability of the structure. In terms of the material itself, the authors analyze macroscale (structural) factors of the geometry of the real structure (by 3D scanning: material wear detection, deflections and deformations, etc.) and measured real operational loads to develop an integrated method, including material model and behavior in its operational condition, delivering a useful tool for macroscale structural analyses of the materials under complex load (mechanical, thermal, chemical, etc.). As a result, a detailed analysis of the tank is presented. The paper gives an idea of the method, its development, usefulness, and applicability of the presented approach by indication of the mutual influence of pressure vessel components (e.g., stubs, manholes) and operational loads, which may result in underestimating the strength and durability of the pressure vessels in the design process and during operation.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15207281