Comprehensive effects of heavy-ion beam irradiation on sweet potato (Ipomoea batatas [L.] Lam.)

Sweet potato is a major root crop with nutritious tuberous roots. The mechanism of tuberous root development has not yet been adequately elucidated. Genetic resources are required to develop the molecular understanding of sweet potato. Heavy-ion beams were applied to hexaploid sweet potato for an in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant Biotechnology 2022/09/25, Vol.39(3), pp.311-316
Hauptverfasser: Park, Hyungjun, Narasako, Yosuke, Abe, Tomoko, Kunitake, Hisato, Hirano, Tomonari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sweet potato is a major root crop with nutritious tuberous roots. The mechanism of tuberous root development has not yet been adequately elucidated. Genetic resources are required to develop the molecular understanding of sweet potato. Heavy-ion beams were applied to hexaploid sweet potato for an increase in genetic variation, after which the comprehensive effects of heavy-ion beam irradiation were investigated. In vitro cultured shoots with an axillary bud of ‘Beniharuka’ were irradiated with Ar-ions at a dose of 1–5 Gy and C-ions at a dose of 5–20 Gy, and three irradiated lines were separated from each irradiated shoot. The shoot regeneration was inhibited at high doses of each ion irradiation. Ar-ion irradiation had an especially high biological effect on shoot regeneration. A total of 335 lines were obtained, consisting of 104 and 231 lines derived from Ar- and C-ion irradiation, respectively. The change in the DNA content of the lines was analyzed by flow cytometry to evaluate the irradiation-induced damage to the DNA. The two lines demonstrated significant differences in the DNA content and changes at the chromosome level. The screening for the morphological mutants was conducted in the field. Some irradiated lines showed inhibited or no tuberous root phenotype as mutant candidates. Additionally, the high-yield mutant candidates were dominated by Ar-ion irradiation. It was indicated that heavy-ion beam mutagenesis is effective in broadening the range of the phenotypes corresponding to tuberous root formation in hexaploid sweet potato.
ISSN:1342-4580
1347-6114
DOI:10.5511/plantbiotechnology.22.0725a