Mitochondrial measures in neuronally enriched extracellular vesicles predict brain and retinal atrophy in multiple sclerosis
Background: Mitochondrial dysfunction plays an important role in multiple sclerosis (MS) disease progression. Plasma extracellular vesicles are a potential source of novel biomarkers in MS, and some of these are derived from mitochondria and contain functional mitochondrial components. Objective: To...
Gespeichert in:
Veröffentlicht in: | Multiple sclerosis 2022-11, Vol.28 (13), p.2020-2026 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
Mitochondrial dysfunction plays an important role in multiple sclerosis (MS) disease progression. Plasma extracellular vesicles are a potential source of novel biomarkers in MS, and some of these are derived from mitochondria and contain functional mitochondrial components.
Objective:
To evaluate the relationship between levels of mitochondrial complex IV and V activity in neuronally enriched extracellular vesicles (NEVs) and brain and retinal atrophy as assessed using serial magnetic resonance imaging (MRI) and optical coherence tomography (OCT).
Methods:
Our cohort consisted of 48 people with MS. NEVs were immunocaptured from plasma and mitochondrial complex IV and V activity levels were measured. Subjects underwent OCT every 6 months and brain MRI annually. The associations between baseline mitochondrial complex IV and V activities and brain substructure and retinal thickness changes were estimated utilizing linear mixed-effects models.
Results:
We found that higher mitochondrial complex IV activity and lower mitochondrial complex V activity levels were significantly associated with faster whole-brain volume atrophy. Similar results were found with other brain substructures and retinal layer atrophy.
Conclusion:
Our results suggest that mitochondrial measures in circulating NEVs could serve as potential biomarkers of disease progression and provide the rationale for larger follow-up longitudinal studies. |
---|---|
ISSN: | 1352-4585 1477-0970 |
DOI: | 10.1177/13524585221106290 |