Identification of a miRSNP Regulatory Axis in Abdominal Aortic Aneurysm by a Network and Pathway-Based Integrative Analysis

Abdominal aortic aneurysm (AAA) refers to local abnormal expansion of the abdominal aorta and mostly occurs in elderly men. MicroRNA (miRNA) is single-stranded RNA consisting of 18–25 nucleotides. It plays a key role in posttranscriptional gene expression and in the regulation of human functions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2022, Vol.2022, p.8776566-15
Hauptverfasser: Liu, Shenrong, Liao, Yanfen, Liu, Changsong, Zhou, Haobin, Chen, Gui, Lu, Weiling, Huang, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abdominal aortic aneurysm (AAA) refers to local abnormal expansion of the abdominal aorta and mostly occurs in elderly men. MicroRNA (miRNA) is single-stranded RNA consisting of 18–25 nucleotides. It plays a key role in posttranscriptional gene expression and in the regulation of human functions and disease development. miRNA exerts its function mainly through the binding of complementary base pairs to the 3′ regulatory region of mRNA transcripts. Therefore, miRNA-related single-nucleotide polymorphisms (miRSNPs) can affect miRNA expression and processing kinetics. miRSNPs can be classified based on their location: miRSNPs within miRNA-producing genes and miRSNPs within miRNA target genes. Increasing evidence indicates that miRSNPs play an important role in the pathogenic kinetics of cardiovascular diseases. The aim of this study was to identify potential miRNAs and integrate them into a miRSNP-based disease-related pathway network, the results of which are of great significance to the interpretation of the potential mechanisms and functions of miRSNPs in the pathogenesis of diseases.
ISSN:1942-0900
1942-0994
DOI:10.1155/2022/8776566