Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images

One of the most prevalent causes of visual loss and blindness is glaucoma. Conventionally, instrument-based tools are employed for glaucoma screening. However, they are inefficient, time-consuming, and manual. Hence, computerized methodologies are needed for fast and accurate diagnosis of glaucoma....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2022-10, Vol.35 (5), p.1283-1292
Hauptverfasser: Parashar, Deepak, Agrawal, Dheraj Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most prevalent causes of visual loss and blindness is glaucoma. Conventionally, instrument-based tools are employed for glaucoma screening. However, they are inefficient, time-consuming, and manual. Hence, computerized methodologies are needed for fast and accurate diagnosis of glaucoma. Therefore, we proposed a Computer-Aided Diagnosis (CAD) method for the classification of glaucoma stages using Image Empirical Mode decomposition (IEMD). In this study, IEMD is applied to decompose the preprocessed fundus photographs into different Intrinsic Mode Functions (IMFs) to capture the pixel variations. Then, the significant texture-based descriptors have been computed from the IMFs. A dimensionality reduction approach called Principal Component Analysis (PCA) has been employed to pick the robust descriptors from the retrieved feature set. We used the Analysis of Variance (ANOVA) test for feature ranking. Finally, the LS-SVM classifier has been employed to classify glaucoma stages. The proposed CAD system achieved a classification accuracy of 94.45% for the binary classification on the RIM-ONE r12 database. Our approach demonstrated better glaucoma classification performance than the existing automated systems.
ISSN:0897-1889
1618-727X
DOI:10.1007/s10278-022-00648-1