Models with higher effective dimensions tend to produce more uncertain estimates

Mathematical models are getting increasingly detailed to better predict phenomena or gain more accurate insights into the dynamics of a system of interest, even when there are no validation or training data available. Here, we show through ANOVA and statistical theory that this practice promotes fuz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-10, Vol.8 (42), p.eabn9450-eabn9450
Hauptverfasser: Puy, Arnald, Beneventano, Pierfrancesco, Levin, Simon A, Lo Piano, Samuele, Portaluri, Tommaso, Saltelli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical models are getting increasingly detailed to better predict phenomena or gain more accurate insights into the dynamics of a system of interest, even when there are no validation or training data available. Here, we show through ANOVA and statistical theory that this practice promotes fuzzier estimates because it generally increases the model's effective dimensions, i.e., the number of influential parameters and the weight of high-order interactions. By tracking the evolution of the effective dimensions and the output uncertainty at each model upgrade stage, modelers can better ponder whether the addition of detail truly matches the model's purpose and the quality of the data fed into it.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abn9450