Dihydromaniwamycin E, a Heat-Shock Metabolite from Thermotolerant Streptomyces sp. JA74, Exhibiting Antiviral Activity against Influenza and SARS-CoV‑2 Viruses

Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of natural products (Washington, D.C.) D.C.), 2022-11, Vol.85 (11), p.2583-2591
Hauptverfasser: Saito, Shun, Funayama, Kayo, Kato, Wataru, Okuda, Mayu, Kawamoto, Meiko, Matsubara, Teruhiko, Sato, Toshinori, Sato, Akihiko, Otsuguro, Satoko, Sasaki, Michihito, Orba, Yasuko, Sawa, Hirofumi, Maenaka, Katsumi, Shindo, Kazutoshi, Imoto, Masaya, Arai, Midori A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a “heat shock metabolite (HSM)” by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 μM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 μM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.
ISSN:0163-3864
1520-6025
DOI:10.1021/acs.jnatprod.2c00550