Biodiesel Production Using Lithium Metasilicate Synthesized from Non-Conventional Sources

A facile and versatile process to produce lithium metasilicate (Li2SiO3) from non-conventional silicon sources (two different sand sources from the central area of México) was developed. The synthesis protocol based on a solid-state reaction followed by a hydrothermal treatment resulted in highly pu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-09, Vol.15 (19), p.6753
Hauptverfasser: Coutino-Gonzalez, Eduardo, Ávila-Gutiérrez, Mario, Hernández-Palomares, Arnold, Olvera, Lilian I., Rodríguez-Valadez, Francisco J., Espejel-Ayala, Fabricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A facile and versatile process to produce lithium metasilicate (Li2SiO3) from non-conventional silicon sources (two different sand sources from the central area of México) was developed. The synthesis protocol based on a solid-state reaction followed by a hydrothermal treatment resulted in highly pure lithium metasilicate, as corroborated by XRD, SEM-EDS, and XPS analysis. Furthermore, lithium metasilicate was used as a heterogeneous catalyst for biodiesel production from soybean oil, where conversion yields were compared according to the silicon source used (based on chemical purity, stability, and yield efficiency). The best performing metasilicate material displayed a maximum of 95.5% of biodiesel conversion under the following conditions: 180 min, 60 °C, 5% catalyst (wt./wt., catalyst-to-oil), and 18:1 (methanol:oil). This contribution opens up alternatives for the production of lithium metasilicate using non-conventional precursors and its use as an alternative catalyst in biodiesel production, displaying better chemical stability against humidity than conventional heterogeneous catalysts.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15196753