Electrocatalytic water oxidation on CuO–Cu2O modulated cobalt-manganese layered double hydroxide

Layered double hydroxides (LDH) are potential electrocatalysts to address the sluggish oxygen evolution reaction (OER) of water splitting. In this work, copper oxide (CuO/Cu2O) nanoparticles are integrated with cobalt-manganese layered double hydroxide (CoMn-LDH) to enhance their performance towards...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-10, Vol.12 (45), p.28954-28960
Hauptverfasser: Arslan Hameed, Zulfiqar, Faiza, Iqbal, Waheed, Hassan, Ali, Syed Shoaib Ahmad Shah, Nadeem, Muhammad Arif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Layered double hydroxides (LDH) are potential electrocatalysts to address the sluggish oxygen evolution reaction (OER) of water splitting. In this work, copper oxide (CuO/Cu2O) nanoparticles are integrated with cobalt-manganese layered double hydroxide (CoMn-LDH) to enhance their performance towards OER. The catalyst is synthesized by growing CoMn-LDH nanosheets in the presence of CuO/Cu2O nanoparticles that were obtained by the calcination of the copper containing metal–organic framework (HKUST-1). The synthesized CoMn-LDH@CuO/Cu2O electrocatalyst shows excellent activity towards OER with an overpotential of 297 mV at a catalytic current density of 10 mA cm−2 and have a Tafel slope value of 89 mV dec−1. Moreover, a slight decrease in the performance parameters is observed until the 15 h of continuous operation. We propose that the conductive strength of CuO/Cu2O and its synergistic effect with the CoMn-LDH are responsible for the improved OER performance of the desired electrocatalyst.
ISSN:2046-2069
2046-2069
DOI:10.1039/d2ra05036f