A Chimeric Penicillin Binding Protein 2X Significantly Decreases in Vitro Beta-Lactam Susceptibility and Increases in Vivo Fitness of Streptococcus pyogenes

All tested strains of Streptococcus pyogenes (group A streptococcus, GAS) remain susceptible to penicillin. However, GAS strains with amino acid substitutions in penicillin-binding proteins that confer decreased susceptibility to beta-lactam antibiotics have been identified recently. This discovery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2022-10, Vol.192 (10), p.1397-1406
Hauptverfasser: Olsen, Randall J., Zhu, Luchang, Mangham, Regan E., Faili, Ahmad, Kayal, Samer, Beres, Stephen B., Musser, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All tested strains of Streptococcus pyogenes (group A streptococcus, GAS) remain susceptible to penicillin. However, GAS strains with amino acid substitutions in penicillin-binding proteins that confer decreased susceptibility to beta-lactam antibiotics have been identified recently. This discovery raises concerns about emergence of beta-lactam antibiotic resistance in GAS. Whole genome sequencing recently identified GAS strains with a chimeric penicillin-binding protein 2X (PBP2X) containing a recombinant segment from Streptococcus dysgalactiae subspecies equisimilis (SDSE). To directly test the hypothesis that the chimeric SDSE-like PBP2X alters beta-lactam susceptibility in vitro and fitness in vivo, an isogenic mutant strain was generated and virulence assessed in a mouse model of necrotizing myositis. Compared with naturally occurring and isogenic strains with a wild-type GAS-like PBP2X, strains with the chimeric SDSE-like PBP2X had reduced susceptibility in vitro to nine beta-lactam antibiotics. In a mouse model of necrotizing myositis, the strains had identical fitness in the absence of benzylpenicillin treatment. However, mice treated intermittently with a subtherapeutic dose of benzylpenicillin had significantly more colony-forming units recovered from limbs infected with strains with the chimeric SDSE-like PBP2X. These results show that mutations such as the PBP2X chimera may result in significantly decreased beta-lactam susceptibility and increased fitness and virulence. Expanded diagnostic laboratory surveillance, genome sequencing, and molecular pathogenesis study of potentially emergent beta-lactam antibiotic resistance among GAS are needed. [Display omitted]
ISSN:0002-9440
1525-2191
DOI:10.1016/j.ajpath.2022.06.011