Charge-Separated Reactive Intermediates from the UV Photodissociation of Chlorobenzene in Solution

Although ultraviolet (UV)-induced photochemical cleavage of carbon–halogen bonds in gaseous halocarbons is mostly homolytic, the photolysis of chlorobenzene in solution has been proposed to produce a phenyl cation, c-C6H5 +, which is a highly reactive intermediate of potential use in chemical synthe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-10, Vol.126 (39), p.6934-6943
Hauptverfasser: Kao, Min-Hsien, Orr-Ewing, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although ultraviolet (UV)-induced photochemical cleavage of carbon–halogen bonds in gaseous halocarbons is mostly homolytic, the photolysis of chlorobenzene in solution has been proposed to produce a phenyl cation, c-C6H5 +, which is a highly reactive intermediate of potential use in chemical synthesis and N2 activation. Any evidence for such a route to phenyl cations is indirect, with uncertainty remaining about the possible mechanism. Here, ultrafast transient absorption spectroscopy of UV-excited (λ = 240 and 270 nm) chlorobenzene solutions in fluorinated (perfluorohexane) and protic (ethanol and 2,2,2-trifluoroethanol) solvents reveals a broad electronic absorption band centered at 540 nm that is assigned to an isomer of chlorobenzene with both charge-separated and triplet-spin carbene character. This spectroscopic feature is weaker, or absent, when experiments are conducted in cyclohexane. The intermediate isomer of chlorobenzene has a solvent-dependent lifetime of 30–110 ps, determined by reaction with the solvent or quenching to a lower-lying singlet state. Evidence is presented for dissociation to ortho-benzyne, but the intermediate could also be a precursor to phenyl cation formation.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.2c05327