Restricted Spatial Regression Methods: Implications for Inference

The issue of spatial confounding between the spatial random effect and the fixed effects in regression analyses has been identified as a concern in the statistical literature. Multiple authors have offered perspectives and potential solutions. In this article, for the areal spatial data setting, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2022, Vol.117 (537), p.482-494
Hauptverfasser: Khan, Kori, Calder, Catherine A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The issue of spatial confounding between the spatial random effect and the fixed effects in regression analyses has been identified as a concern in the statistical literature. Multiple authors have offered perspectives and potential solutions. In this article, for the areal spatial data setting, we show that many of the methods designed to alleviate spatial confounding can be viewed as special cases of a general class of models. We refer to this class as restricted spatial regression (RSR) models, extending terminology currently in use. We offer a mathematically based exploration of the impact that RSR methods have on inference for regression coefficients for the linear model. We then explore whether these results hold in the generalized linear model setting for count data using simulations. We show that the use of these methods have counterintuitive consequences which defy the general expectations in the literature. In particular, our results and the accompanying simulations suggest that RSR methods will typically perform worse than nonspatial methods. These results have important implications for dimension reduction strategies in spatial regression modeling. Specifically, we demonstrate that the problems with RSR models cannot be fixed with a selection of "better" spatial basis vectors or dimension reduction techniques. Supplementary materials for this article are available online.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2020.1788949