NMR-based isotope editing, chemoselection and isotopomer distribution analysis in stable isotope resolved metabolomics

•We review recent developments in NMR-based stable isotope tracing.•Isotope editing is a powerful NMR tool for selecting and identifying isotopomers.•Chemoselection using isotope editing enables metabolite analysis in complex mixtures. NMR is a very powerful tool for identifying and quantifying comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2022-10, Vol.206 (C), p.8-17
Hauptverfasser: Lin, Penghui, W-M. Fan, Teresa, Lane, Andrew N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We review recent developments in NMR-based stable isotope tracing.•Isotope editing is a powerful NMR tool for selecting and identifying isotopomers.•Chemoselection using isotope editing enables metabolite analysis in complex mixtures. NMR is a very powerful tool for identifying and quantifying compounds within complex mixtures without the need for individual standards or chromatographic separation. Stable Isotope Resolved Metabolomics (or SIRM) is an approach to following the fate of individual atoms from precursors through metabolic transformation, producing an atom-resolved metabolic fate map. However, extracts of cells or tissue give rise to very complex NMR spectra. While multidimensional NMR experiments may partially overcome the spectral overlap problem, additional tools may be needed to determine site-specific isotopomer distributions. NMR is especially powerful by virtue of its isotope editing capabilities using NMR active nuclei such as 13C, 15N, 19F and 31P to select molecules containing just these atoms in a complex mixture, and provide direct information about which atoms are present in identified compounds and their relative abundances. The isotope-editing capability of NMR can also be employed to select for those compounds that have been selectively derivatized with an NMR-active stable isotope at particular functional groups, leading to considerable spectral simplification. Here we review isotope analysis by NMR, and methods of chemoselection both for spectral simplification, and for enhanced isotopomer analysis.
ISSN:1046-2023
1095-9130
DOI:10.1016/j.ymeth.2022.07.014