Molecular Characterization of Gene-Mediated Resistance and Susceptibility of ESKAPE Clinical Isolates to Cistus monspeliensis L. and Cistus salviifolius L. Extracts

Background. Multidrug resistance (MDR) and extensively drug-resistant (XDR) are now the biggest threats to human beings. Alternative antimicrobial regimens to conventional antibiotic paradigms are extensively searched. Although Cistus extracts have long been used for infections in traditional folk m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2022-09, Vol.2022, p.1-16
Hauptverfasser: Zalegh, Imane, Bourhia, Mohammed, Zerouali, Khalid, Katfy, Khalid, Nayme, Kaotar, Khallouki, Farid, Benzaarate, Ihssane, Mohammad Salamatullah, Ahmad, Alzahrani, Abdulhakeem, Nafidi, Hiba-Allah, Akssira, Mohamed, Ait Mhand, Rajaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Multidrug resistance (MDR) and extensively drug-resistant (XDR) are now the biggest threats to human beings. Alternative antimicrobial regimens to conventional antibiotic paradigms are extensively searched. Although Cistus extracts have long been used for infections in traditional folk medicines around the world, their efficacy against resistant bacteria still needs to be elucidated. We aim to investigate the antibiotic susceptibility profiles of clinical strains Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae (acronym “ESKAPE”), and their resistance mechanisms by PCR, as well as their sensitivity to C. monspeliensis (CM) and C. salviifolius (CS) methanol extracts and their fractions. Methods. Antibiotic susceptibility profile and resistance mechanism were done by antibiogram and PCR. Fractions of CM and CS were obtained using maceration and Soxhlet; their antibacterial activities were evaluated by determining inhibition zone diameter (IZD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Results. Results revealed that all strains were XDR except S. aureus, which was MDR. The PCR indicates the presence of gene-mediated resistance (blaCTX-M, blaSHV, blaOXA-48, blaNDM, blaOXA-51, blaOXA-58, blaIMP, blaVIM, and blamecA). Also, maceration was slightly better for bioactivity preservation. Overall, the extracts of CM (IZD = 20 mm, MIC = 0.01 mg/mL) were more active than those of CS. All extracts inhibited MRSA (methicillin-resistant Staphylococcus aureus) and ERV (Enterococcus faecium Vancomycin-Resistant) with interesting MICs. The ethyl acetate fraction manifested great efficacy against all strains. Monoterpene hydrocarbons and sesquiterpenes oxygenated were the chemical classes of compounds dominating the analyzed fractions. Viridiflorol was the major compound in ethyl acetate fractions of 59.84% and 70.77% for CM and CS, respectively. Conclusions. The superior activity of extracts to conventional antibiotics was seen for the first time in the pathogens group, and their bactericidal effect could be a promising alternative for developing clinical antibacterial agents against MDR and XDR ESKAPE bacteria.
ISSN:1741-427X
1741-4288
DOI:10.1155/2022/7467279