O-GlcNAcylation and stablization of SIRT7 promote pancreatic cancer progression by blocking the SIRT7-REGγ interaction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and its dismal prognosis indicates the urgent need to elucidate the potential oncogenic mechanisms. SIRT7 is a classic NAD + -dependent deacetylase that stabilizes the transformed state of cancer cells. However, its functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2022-10, Vol.29 (10), p.1970-1981
Hauptverfasser: He, Xiaoman, Li, Yongzhou, Chen, Qing, Zheng, Lei, Lou, Jianyao, Lin, Chuanshuai, Gong, Jiali, Zhu, Yi, Wu, Yulian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and its dismal prognosis indicates the urgent need to elucidate the potential oncogenic mechanisms. SIRT7 is a classic NAD + -dependent deacetylase that stabilizes the transformed state of cancer cells. However, its functional roles in PDAC are still unclear. Here, we found that SIRT7 expression is upregulated and predicts poor prognosis in PDAC. Then we screened the new interacting proteins of SIRT7 by mass spectrometry and the results showed that SIRT7 can interact with O-GlcNAc transferase (OGT). O-GlcNAcylation stabilizes the SIRT7 protein by inhibiting its interaction with REGγ to prevent degradation, and hyper-O-GlcNAcylation in pancreatic cancer cells leads to hypoacetylation of H3K18 via SIRT7, which promotes transcriptional repression of several tumour suppressor genes. In addition, SIRT7 O-GlcNAcylation at the serine 136 residue (S136) is required to maintain its protein stability and deacetylation ability. In vivo and in vitro experiments showed that blocking SIRT7 O-GlcNAcylation at S136 attenuates tumour progression. Collectively, we demonstrate that O-GlcNAcylation is an important post-translational modification of SIRT7 in pancreatic cancer cells, and elucidating this mechanism of SIRT7 is expected to pave the way for the development of novel therapeutic methods in the future.
ISSN:1350-9047
1476-5403
DOI:10.1038/s41418-022-00984-3