Full-text chemical identification with improved generalizability and tagging consistency

Chemical identification involves finding chemical entities in text (i.e. named entity recognition) and assigning unique identifiers to the entities (i.e. named entity normalization). While current models are developed and evaluated based on article titles and abstracts, their effectiveness has not b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Database : the journal of biological databases and curation 2022-09, Vol.2022
Hauptverfasser: Kim, Hyunjae, Sung, Mujeen, Yoon, Wonjin, Park, Sungjoon, Kang, Jaewoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical identification involves finding chemical entities in text (i.e. named entity recognition) and assigning unique identifiers to the entities (i.e. named entity normalization). While current models are developed and evaluated based on article titles and abstracts, their effectiveness has not been thoroughly verified in full text. In this paper, we identify two limitations of models in tagging full-text articles: (1) low generalizability to unseen mentions and (2) tagging inconsistency. We use simple training and post-processing methods to address the limitations such as transfer learning and mention-wise majority voting. We also present a hybrid model for the normalization task that utilizes the high recall of a neural model while maintaining the high precision of a dictionary model. In the BioCreative VII NLM-Chem track challenge, our best model achieves 86.72 and 78.31 F1 scores in named entity recognition and normalization, significantly outperforming the median (83.73 and 77.49 F1 scores) and taking first place in named entity recognition. In a post-challenge evaluation, we re-implement our model and obtain 84.70 F1 score in the normalization task, outperforming the best score in the challenge by 3.34 F1 score. Database URL: https://github.com/dmis-lab/bc7-chem-id
ISSN:1758-0463
1758-0463
DOI:10.1093/database/baac074