Refinement of Computational Access to Molecular Physicochemical Properties: From Ro5 to bRo5

There is a need of computational tools to rank bRo5 drug candidates in the very early phases of drug discovery when chemical matter is unavailable. In this study, we selected three compounds: (a) a Ro5 drug (Pomalidomide), (b) a bRo5 orally available drug (Saquinavir), and (c) a polar PROTAC (CMP 98...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2022-09, Vol.65 (18), p.12068-12083
Hauptverfasser: Rossi Sebastiano, Matteo, Garcia Jimenez, Diego, Vallaro, Maura, Caron, Giulia, Ermondi, Giuseppe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a need of computational tools to rank bRo5 drug candidates in the very early phases of drug discovery when chemical matter is unavailable. In this study, we selected three compounds: (a) a Ro5 drug (Pomalidomide), (b) a bRo5 orally available drug (Saquinavir), and (c) a polar PROTAC (CMP 98) to focus on computational access to physicochemical properties. To provide a benchmark, the three compounds were first experimentally characterized for their lipophilicity, polarity, IMHBs, and chameleonicity. To reproduce the experimental information content, we generated conformer ensembles with conformational sampling and molecular dynamics in both water and nonpolar solvents. Then we calculated Rgyr, 3D PSA, and IMHB number. An innovative pool of strategies for data analysis was then provided. Overall, we report a contribution to close the gap between experimental and computational methods for characterizing bRo5 physicochemical properties.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.2c00774