Screening of plasma exosomal lncRNAs to identify potential biomarkers for obstructive sleep apnea

BackgroundObstructive sleep apnea (OSA) is highly prevalent, but frequently undiagnosed. The existing biomarkers of OSA are relatively insensitive and inaccurate. Long non-coding RNAs (lncRNAs) have no protein-coding ability but have a role in regulating gene expression. They are stably expressed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of translational medicine 2022-09, Vol.10 (17), p.936-936
Hauptverfasser: Chen, Xunxun, Liu, Hongbing, Huang, Rong, Wei, Ran, Zhao, Yuchuan, Li, Taoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BackgroundObstructive sleep apnea (OSA) is highly prevalent, but frequently undiagnosed. The existing biomarkers of OSA are relatively insensitive and inaccurate. Long non-coding RNAs (lncRNAs) have no protein-coding ability but have a role in regulating gene expression. They are stably expressed in exosomes, easily and rapidly measurable. Changes in expression of exosomal lncRNAs can be useful for disease diagnoses. However, there are few reports on the association of exosomal lncRNAs with OSA. We aimed to investigate the exosomal lncRNA profiles to establish the differences between non-OSA, OSA with or without hypertension (HTN) and serve as a potential diagnostic biomarker. MethodsThis diagnostic test included 63 participants: [normal control (NC) =25], (OSA =23), and (HTN-OSA =15). Expression profiling of lncRNAs in isolated exosomes was performed through high-throughput sequencing in 9 participants. Subsequently, OSA/HTN-OSA related lncRNAs were selected for validation by droplet digital polymerase chain reaction (ddPCR), receiver operating characteristic (ROC) curves were used to determine the diagnostic value. The reliabilities of the screened gene were further validated in another independent cohort: (NC =10), (OSA mild =10), (OSA moderate =11), and (OSA severe =10), the correlation between clinical features and its expression was analyzed. The MiRanda software was used to predict the binding sites of interaction between microRNA (miRNA) and target genes regulated by screened lncRNA. ResultsWe identified the differentially expressed lncRNAs and mRNAs in plasma exosomes of the NC, OSA, HTN-OSA groups. Most pathways enriched in differentially expressed lncRNAs and mRNAs had previously been linked to OSA. Among them, ENST00000592016 enables discrimination between NC and OSA individuals [area under curve (AUC) =0.846, 95% confidence interval (CI): 0.72-0.97]. The severity of OSA was associated with changes in the ENST00000592016 expression. Furthermore, ENST00000592016 affected the PI3K-Akt, MAPK, and TNF pathways by regulating miRNA expressions. ConclusionsThis is the first report about differential expression of lncRNA in OSA and HTN-OSA exosomes. ENST00000592016 enables discrimination between NC and OSA individuals. This work enabled characterization of OSA and provided the preliminary work for the study of biomarker of OSA.
ISSN:2305-5839
2305-5839
DOI:10.21037/atm-22-3818